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Effects of Turbulent Boundary Layer on Panel Flutter
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Numerical studies were carried out to investigate the effects of turbulent boundary layers on panel flutter at
supersonic speeds. In this study, Reynolds-averaged Navier—Stokes equations were solved to take into account the
turbulent boundary layer and its viscous effects. First, the fluid-structure coupling code was validated. The
computed flutter boundaries agreed well with experimental data. Moreover, the results showed that the viscous
effects were important and should be taken into account for flutter computation. Second, the boundary-layer effects
were investigated in the Mach number range of 1.0-2.4. We compared the Reynolds-averaged Navier—Stokes
computation with the inviscid computation and discussed the differences between them. We found that the boundary
layer has not only a stabilizing effect but also a destabilizing effect, depending on the Mach number. The most
important finding is that the flutter dynamic pressure slowly increases due to the boundary layer as the Mach number
increases. In addition, the design boundary methodology was reviewed in terms of the turbulent boundary-layer
effect, which will be helpful for the development of a new boundary-layer correction for the design boundary.

Nomenclature

Jacobian of flux vector

panel length in the streamwise direction
panel length in the spanwise direction
sonic speed

plate stiffness, E;h3/12(1 — v?)
inviscid flux

Young modulus

viscous flux

frequency

panel thickness

Jacobian of coordinate transformation
Mach number

pressure

solution vector

Reynolds number

freestream velocity

Cartesian coordinate

98% thickness of boundary layer
time step

pseudo time step

nondimensional dynamic pressure, p,,U2,a®/D
Poisson ratio

generalized coordinate

air density
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Subscripts

invis
vis
00

value at flutter boundary
inviscid computation
viscous computation
value of freestream
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I.

ANEL flutter is well known as flutter of the skin panel of rockets,

supersonic transports, and fighters. This phenomenon is a self-
excited oscillation of thin panels due to aeroelastic instability at
supersonic speed. Much research on panel flutter has been conducted
in the past, theoretically and experimentally, and some results are
reviewed in [1,2]. Despite the simple geometry of a panel (e.g., a
rectangular panel or shell), it is generally hard to obtain quantitative
agreement of flutter boundaries between computation and experi-
ment [3], since there are many factors affecting the boundaries, such
as the effects of a turbulent boundary layer above the panel, structural
damping, static-pressure differential across the panel, cavity
resonance, and manufacturing imperfection. Therefore, efforts have
been made to reduce these confounding effects and to measure flutter
boundaries under ideal conditions. Nevertheless, those effects were
not fully eliminated and it is hard to obtain quantitative agreement,
especially in low-supersonic regions (M = 1.0-1.4). It is therefore
necessary to understand these effects.

Fung [4] indicated that, among those effects, the turbulent
boundary layer is the main reason why the computation cannot
predict flutter boundaries. Next, Muhlstein et al. [5] and Gaspers et al.
[6] investigated the effects of the turbulent boundary layer in low-
supersonic regions, using a test fixture that can control the thickness
of the boundary layer above a panel. These experiments were
performed so as to reduce the confounding effects mentioned above.
They concluded that the turbulent boundary layer has a large
stabilizing effect on flutter at low-supersonic speeds and that the
effect is the largest near M = 1.2 and decreases rapidly with
increasing Mach number up to M = 1.4. Therefore, the effect was
believed to appear near M = 1.2 (low-supersonic region).

Next, Dowell [7,8] computed the flutter boundaries under
experimental conditions [3], taking into account the mean flow vari-
ation at the boundary layer. He solved linear perturbation equations
to obtain pressure on the panel. In addition, he neglected viscosity
and employed a one-seventh power low as the mean velocity profile.
Although his computation realized a stabilizing effect, there was poor
agreement with the experimental data.

Recently, computational fluid dynamics (CFD) has often been
employed for fluid—structure coupled analysis. For panel flutter
problems, Davis and Bendiksen [9] first analyzed transonic panel
flutter and investigated shock-wave motion on panels using CFD.
Then Selvam et al. [10] and Gordnier and Visbal [11] investigated
limit cycle oscillation above a flutter boundary and the viscous effects
on its amplitude and frequency. However, no comparison with
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experimental data was made in their research. Moreover, viscous
effects on flutter boundaries were not investigated.

In this study, we investigated the effects of a turbulent boundary
layer on flutter boundaries by solving Reynolds-averaged Navier—
Stokes (RANS) equations. First, computed flutter boundaries were
compared with the experimental data measured by Muhlstein et al.
[5] at M = 1.1-1.4 to validate our fluid—structure coupled analysis
code, taking into account the viscous effects. Next, flutter boundaries
at higher Mach numbers (M = 1.1-2.4) were computed using the
code and were compared to those computed by inviscid flow to
clarify the effects of the turbulent boundary layer.

II. Computational Method
A. Aerodynamic Solver

The governing aerodynamic equations are Euler or RANS
equations written in generalized coordinates. These equations are
solved using the perfect gas relationship. In addition, the molecular
viscous coefficient is computed by Sutherland’s law and the Prandtl
number is assumed to be constant.

In most panel flutter problems, the nondimensional flutter
frequency (St; = fra/Uy) is much less than 1; they are 0.04-0.08
for M = 1.1-1.4 in this problem. In addition, a very thin grid must be
used to resolve the viscous sublayer. Therefore, an implicit time
integration method should be employed to obtain a solution in
practical time. In this study, lower/upper symmetric Gauss—Seidel
involving the dual-time-stepping method was employed for time
integration. The numerical algorithm is written in delta form as
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where n is a physical time step number and m is a subiteration
number. When a sufficient subiteration number is used, second-order
time accuracy is achieved in this formulation. The last term at the
right-hand side computes a Jacobian time derivative using the
geometric conservation law.

Inviscid fluxes on the right-hand side are computed by Roe’s
approximate Riemann solver with third-order MUSCL interpolation,
whereas viscous fluxes are computed by a second-order central
difference. Regarding the turbulence model, we mainly employed
the Baldwin—-Lomax (BL) model [12], since the nondimensional
flutter frequency St is relatively low. We also employed the Spalart—
Allmaras (SA) model [13] to see the effects of turbulence models.
The BL model is a simple zero-equation model, whereas the SA
model is a one-equation model including a convection term.

B. Structure Solver

The turbulent boundary layer forms a moderate pressure gradient
in the streamwise direction above the panel, and the cavity pressure
(the pressure under the panel) is assumed to be constant in this study.
Therefore, the panel may deflect due to the static-pressure differential
across the panel, and its deflection can become large and nonlinear,
depending on the pressure differential. To avoid an unphysical large
deflection, we employed the von Kdrmdn plate equations [14] that are
nonlinear large-deformation plate equations considering in-plane
stresses. We solved the equations by a finite difference method
(FDM) [14]. A second-order central difference was employed for
space derivatives, and Newmark’s  method was employed for time
integration.

C. Fluid-Structure Coupling method

To solve aerodynamics and structure dynamics simultaneously, a
strong coupling method was used in which data is exchanged
between the aerodynamic solver and structure solver in every step of
the subiteration. This method can reduce the time lag between the
two solvers [10].

Nonslip boundary conditions are implemented by setting the flow
velocity on the panel surface equal to that of the panel surface. The
deformation velocity and acceleration of the panel are transferred
from the structure solver to the aerodynamic solver as boundary
conditions, where acceleration is considered by setting the pressure
gradient on the surface using the following equation:

B_p =—pa-n 2)
an

where p is pressure, p is density, a is the acceleration vector, and n is
the unit vector normal to the surface. Additionally, we neglect the
normal viscous stress in the equation because the Reynolds number is
high. In this study, we employ the same size grid on the panel both for
aerodynamic and structural computations to transfer the data easily
between the two solvers.

The grid moves with the panel deflection. It is redistributed
smoothly normal to the panel surface using algebraic equations [15],
whereas the grid on the far-field boundary is kept fixed to simplify the
treatment of far-field boundary conditions.

III. Computational Conditions

In this study, we employ the panel configuration and flow condi-
tions of Muhlstein et al.’s [5] experiment. The panel configuration is
shown in Fig. 1. The panel length/width ratio a/b is 0.5 and all sides
are clamped. In addition, the boundary-layer thickness above the
panel, §, is defined as the 98% thickness at the middle of the panel, as
shown in Fig. 1. We mainly use the 10% panel length thickness,
8/a=0.1.

The computational domain employed in this study is shown in
Fig. 2, which also shows the domain size. The upper boundary is high
enough to avoid reflection of the shock wave from the leading edge of
the wall. The adiabatic wall conditions are used for the lower
boundary, and the first-order extrapolation is used for the outflow
boundary. Additionally, the freestream conditions are imposed for
the other boundaries. Moreover, the distance between the inflow
boundary and the panel front edge, Lx, is adjusted to realize the
desired boundary-layer thickness. In addition, the cavity pressure is
assumed to be constant. In this study, we took the average pressure on
the upper surface of the panel as the cavity pressure. In fact, the cavity
pressure in the experiment was also controlled to minimize the
differential pressure across the panel [5].

As for the grid numbers, 90, 59, and 95 points are used in the
streamwise, spanwise, and normal directions, respectively, of which

______,___J[_;(__S_ ____________

Fig. 1 Schematics of panel flutter problem.
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16a

Flow

Fig. 2 Computational domain.

20 points in the streamwise direction and 40 points in the spanwise
direction are distributed on the panel.

An initial velocity is imposed on the panel at the beginning of the
coupled simulation using the following distribution function:

v(x,y) = viyisin® (x/ a)sin® (ry/b) (€)

where xisO) < x < agandyis0 < y < b. The coefficient v;;; is 0.01¢
(c is sonic speed). For the viscous cases, the flowfield is computed to
obtain the converged solution of the turbulent boundary layer in
advance. Then the solution is used as the initial condition of the
coupled simulation, and the flutter boundaries are determined by
computing several cases with a changing Young modulus at a con-
stant Mach number and mass ratio. The computed flutter bound-
aries are compared with experimental data using the nondimensional
dynamic pressure A. Additionally, since the initial response is af-
fected by the initial velocity and its distribution, the simulation is
continued until the oscillation mode is converged.

IV. Results

A. Dependency on Grid and Time Step

In the previous study [16], we analyzed panel flutter in a laminar
and turbulent boundary layer on the panel. The results show that the
flutter boundaries are largely affected by the boundary layer, and
there is a large difference in the flutter boundaries between the
laminar and turbulent boundary layers. The laminar boundary layer
has a larger stabilizing effect than the turbulent boundary layer at the
same Reynolds number, Re = 10°, though the laminar boundary
layer is thinner than the turbulent boundary layer. Thus, both the
boundary-layer thickness and the velocity profile are important to
determine the flutter boundaries. Therefore, the velocity profile of the
boundary layer must be computed accurately. Moreover, the time
step is also important for fluid—structure coupled problems, as
mentioned in [10]. To compute accurate flutter boundaries of the
panel in the turbulent boundary layer, dependency on grid resolution
and time step is examined.

‘We examine the dependency for the cases in which the minimum
grid sizes in the normal direction to the panel, Az, are 5 x 1073,
2x 107, 1x107°, and 5x 10~ and the time steps At are
1.25%x1073,2.5%x 1073,5.0 x 1073, and 1.0 x 1072, where z and ¢
are nondimensionalized by a and a x c, respectively. All cases are
computed under the conditions of M =1.2 and §/a =0.1. In
addition, the subiteration is used three times for each physical time
step in all cases. The computed flutter boundaries are shown in Figs. 3
and 4. The flutter boundary is largely affected by the grid resolution
and time step. As the time step decreases, the flutter dynamic pressure
decreases. Conversely, as the grid size decreases, the flutter dynamic
pressure increases. The limiting values are estimated by Richardson
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Fig. 3 Effect of time step Az on flutter boundary.
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Fig. 4 Effect of grid size Az on flutter boundary.

extrapolation [17]. Although the smallest time step and grid size are
favorable, we selected 2.0 x 10~ and 2.5 x 1073 for Az and At,
respectively, to keep the computational time needed within reason.
The estimated errors are 6-9% in nondimensional dynamic pressure
(Figs. 3 and 4), which is smaller than the variation due to the
boundary layer, as described later. In addition, when the grid size is
evaluated by y* (wall distance measured in viscous length scale), y*
is 0.92 at the middle of the panel for Az of 2.0 x 10~ and is
sufficiently small. When the time step is used, approximately 5300
steps are included in a period of oscillation at M = 1.2 and
8/a = 0.1. These selected grid size and time step are used for the
following computation.

B. Structure Model

Table 1 shows the natural frequencies of the first to fifth modes of
the panel computed by the FDM, and the experimental data [6] is also
shown for comparison. The corresponding mode shapes are
illustrated in Fig. 5. Although errors of approximately 10% were
observed in the third and fourth modes, the natural frequencies show
reasonable agreement as a whole. The errors of the higher-mode
frequencies seem to be due to the different boundary conditions be-
tween computation and experiment. In fact, the edge condition of the
panel in the experiment is not the ideal clamp condition, as men-
tioned in [6]. However, in this problem, the panel mainly oscillates

Table 1 Structure oscillation frequency

Mode
1 2 3 4 5
FDM, Hz 108.1 138.2 191.7 267.9 278.4
Exp, Hz 110.0 143.0 212.0 298.0 287.0
Error, % 1.7 34 9.6 10.1 3.0
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1st 2nd 3rd 4th 5th
Fig. 5 Node line of natural mode.

with the first mode for the lower Mach numbers (1 < M < 1.4) and
with the first and fifth modes for higher Mach numbers (M > 1.4).
Therefore, the effect caused by the errors is thought to be small.

C. Euler Computation

Euler computation was carried out for Mach 1.1-1.4. The flutter
boundaries determined by Euler computation are compared with
Dowell’s computation [7] and the experimental data [5] (Fig. 6).
Dowell [7] computed them using an inviscid small-perturbation
theory, whereas the experimental data are extrapolated values from
the flutter boundaries measured at different boundary-layer
thicknesses. The flutter dynamic pressure obtained by the present
method is lower for Mach 1.1-1.2 and rapidly increases with the
Mach number. This computational result agrees well with Dowell’s
computation, and agreement with experimental data is good except
for M = 1.4. The difference at M = 1.4 seems to be due to the
different panel boundary conditions mentioned in the previous
section, since the component of the third natural mode is larger only
atM=14.

D. RANS computation

Next, RANS computation was carried out at M = 1.2 considering
the turbulent boundary layer. Here, we employed the BL model for
the turbulence model. Flutter dynamic pressures are computed for
the boundary-layer thicknesses in the range of §/a = 0.03-0.11.
Figure 7 compares the computation and experiment [5] flutter
boundaries. As the thickness of the boundary layer increases, the
flutter dynamic pressure increases. The obtained results quanti-
tatively agree well with the experimental data; the boundary layer has
a stabilizing effect (i.e., increased flutter dynamic pressure) on flutter
at M = 1.2. In addition, the flutter boundary obtained by inviscid
(Euler) computation is also shown at §/a = 0 in Fig. 7. The inviscid
flutter boundary is near the asymptotic value at §/a = 0 of the flutter
boundaries for 6/a = 0.03-0.11.

Figure 8 shows a snapshot of a fluttering panel, illustrating the
deflected panel and pressure on the panel surface. The deflection is
amplified in the visualization process so that the oscillation mode can
be identified. The computational conditionsare M = 1.2,6/a = 0.1,
and A = 280. As shown in Fig. 8, the panel oscillates at almost the
first mode at this Mach number. In addition, the pressure on the panel
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Fig. 6 Flutter boundary (inviscid case).
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Fig. 7 Flutter boundaries vs boundary-layer thickness (M = 1.2).

Fig. 8 Fluttering panel and surface pressure.

changes according to the defection. For example, at the moment
shown in the figure, the surface pressure is high on the front side due
to the compression waves and low in the back side due to the
expansion waves.

RANS computation was carried out at Mach 1.1-1.4 using BL and
SA models. The results are shown in Fig. 9, in which the computed
boundaries are compared with Dowell’s computation [7] and the
experimental data [S]. Dowell [7] computed them using an inviscid
small-perturbation theory based on a mean flow of turbulent

600
500 //
400 /
< 300}
G— —@— exp. (6/a=0.1)
200 —O— comp. (RANS-BL)
ool —a— comp. (RANS-SA)
...... comp. (Dowell [7])
0 : : ' ' |
1 1.1 12 1.3 1.4 15

Mach number
Fig. 9 Flutter boundary (viscous case).
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boundary layer, but he did not include the viscous effect. As shown in
Fig. 9, the two computational results using BL and SA models agree
well with the experimental data and show better agreement than
Dowell’s computation at Mach 1.4. This difference comes from the
viscous effect that is neglected in Dowell’s computation. In fact,
Dowell’s computation shows a similar feature to the inviscid com-
putation, in which the flutter dynamic pressure increases rapidly with
the Mach number (Fig. 6). In the present computation, however, the
flutter dynamic pressure increases slowly. As mentioned above, the
present computational code accurately predicts the flutter bound-
aries. Moreover, the viscous effect is significantly important and
should be taken into account in the analysis: otherwise, the flutter
boundaries cannot be predicted accurately. In addition, the panel
flutter problem employed in this study is recommended as a bench-
mark problem to validate a fluid—structure coupled code treating a
turbulent flow, since the turbulent boundary-layer effect on flutter can
be examined directly and clearly.

The two models, BL and SA, predict the flutter boundaries well
and the difference between the two models is small, as shown in
Fig. 9, though the flutter boundaries of the SA model are slightly
higher than those of the BL model. The Baldwin—Lomax model is a
quasi-steady approximation of the turbulent boundary layer. The
results show that the modeling is appropriate in this problem,
probably because the nondimensional flutter frequency Sz, is low.
Therefore, we use the simple BL model hereafter.

E. Effect of Turbulent Boundary Layer

Since the fluid—structure coupled code is well validated, the effects
of the boundary layer were investigated further over a wide range of
Mach numbers. We conducted the RANS computation using the BL
model at §/a = 0.1 and M = 1.1-2.4. Since there is no available
experimental data for M > 1.5, the mass ratio for Mach number 1.4
was used for M > 1.5 as well. We also conducted inviscid
computations for purposes of comparison. The computed flutter
boundaries are shown in Fig. 10. In the low-supersonic region,
M = 1.1-1.3, the flutter dynamic pressures at §/a = 0.1 are much
higher than those of inviscid case. Thus, flutter is stabilized by the
boundary layer in this region. Then the flutter dynamic pressure of
the inviscid case increases rapidly near M = 1.4, a feature similar to
Dowell’s computation [1]. On the other hand, the flutter dynamic
pressure at 6/a = 0.1 increases more slowly than that of the inviscid
case. This slow increase causes inversion of the flutter boundary in
the region M = 1.4-1.8, where flutter is destabilized by the
boundary layer. Further, the flutter dynamic pressure at §/a = 0.1
becomes higher than that of the inviscid case for M > 2.0.

Figure 11 shows the difference in flutter boundaries between the
viscous (RANS) and inviscid (Euler) computations, and this
difference is evaluated in the following equation:

Ao — Ao
diff — VIS 1mnvis

)‘invis

x 100 %
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Fig. 10 Effect of turbulent boundary layer on flutter boundary.
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Fig. 11 Difference between inviscid and viscous computations.

From the figure, the difference appears mainly in the low-supersonic
region. At M = 1.4-1.6, the difference is approximately 30%. Even
recently, quasi-steady aerodynamic theory has been commonly used,
especially for higher Mach numbers (e.g., M > 1.5). Since the flutter
boundaries computed by Euler equations are almost the same as
those computed by the quasi-steady aerodynamic theory for M > 1.5
[9], this difference is thought to be the difference between the viscous
computation and the quasi-steady aerodynamic theories.

The effects of a turbulent boundary layer on panel flutter were
discussed by Muhlstein et al. [5], Gaspers et al. [6], and Dowell [7,8].
Their discussions are limited to the stabilizing effect of flutter in the
low-supersonic region (1.1 < M < 1.3), since the effect was thought
at that time to be the largest in this region. In fact, the effect is large in
this region, as shown in Fig. 11. However, itis necessary to consider a
wide range of Mach numbers in order to understand the effects of the
boundary layer. As shown in Fig. 10, the boundary layer not only has
a stabilizing effect but also a destabilizing effect. The most important
finding here is that the flutter dynamic pressure slowly increases due
to the boundary layer at M = 1.4—1.6. One possible reason for this
slow increase could be an effect secondary to the local Mach number
reduction. Because the flow near the panel becomes slow due to the
boundary layer, the characteristics at the lower Mach numbers
(1 <M =< 1.4) continue even at higher Mach numbers (M > 1.5).

F. Comparison with Design Boundary

In the design process of a skin panel, semi-empirical method-
ologies [18,19] are commonly used to prevent panel flutter. Although
the methodologies were developed in the 1960s and 1970s, they are
still used for designs even these days, such as the Quiet Spike panel
design [20]. Here, we compare the methodology [19] with the present
computation.

The method developed by Laurenson and McPherson [19] is very
simple for an isotropic panel clamped at all sides, such as the panel
used in this study. The nondimensional dynamic pressure is
expressed as a function of Mach number M and the length/width
ratio a/b:

_ @

(a/b)
where f(M) is the Mach number correction factor and FP(a/D) is the
flutter parameter determined by the length/width ratio. In addition,
two kinds of Mach number correction factors are available,
depending on the Mach number. For M > 2.0, the Mach number
correction factor f, (M) = ~M? — 1 was used. In fact, the use of this
factor yields flutter boundaries that show generally good agreement
with those given by theories (e.g., the quasi-steady aerodynamic
theory) for the Mach numbers [19]. On the other hand, the Mach
number correction factor f,, shown in Fig. 12, was used for
1.0 <M =< 2.0, which is a curve-fitting of the low-supersonic
experimental data measured by Kappus et al. [21]. In addition, the
correction factor f, has a dependency on the length/width ratio a/b,
and only the correction factor for a/b = 0.5 is shown in Fig. 12. The
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FP corresponding to the length/width ratio is determined from the
design boundary envelope shown in Fig. 3 of [19]. In this problem,
the flutter parameter FP is 3 x 1073 for the length/width ratio of 0.5.
The design flutter boundaries using f, (M) and f, (M) are shown in
Fig. 13 and are compared with the present computations. For
M < 2.0, the design boundaries using f,(M) agree well with the
present RANS computation, despite the simple calculation using
only the length/width ratio and Mach number. In fact, the experi-
mental data used for the correction factor f, (M) was measured at the
NASA Ames Research Center 2 x 2 foot transonic wind tunnel. It is
the same as the wind tunnel used in Muhlstein et al’s [5] experiment,
the data from which are used for the validation of this study.
Therefore, the boundary-layer thicknesses are almost the same, and
this is a reason for the observed good agreement. Moreover, this
result shows that the Mach number correction factor f, (M) includes
not only the low-supersonic Mach number effect but also the
boundary-layer effects. We have to note that the design boundary
does not consider the boundary-layer thickness §/a. Therefore, the
flutter boundary may change with the thickness, and a RANS
computation is required to determine accurate flutter boundaries.
For M > 2.0, the design boundaries agree well with the Euler
computation. Although the background theory used for the
methodology is not explained in detail in [19], the design boundaries
are almost the same as those computed by the inviscid flow for
M > 2.0. Thus, the correction factor f;(M) does not include the
effect of the boundary layer. The Mach number correction factors f
and f, are inconsistent. Factor f; does not include the boundary-
layer effects, whereas factor f, does include them. In addition, the
flutter boundaries obtained by the RANS computation are a little
higher than those obtained by the Euler computation for M > 2.0
(Fig. 13), though the difference is relatively small in this region
compared to the low-supersonic region (Fig. 11). As mentioned
above, the design boundary has been reviewed in terms of the
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Fig. 13 Comparison between the design boundary and the computed
boundary by the present method.

turbulent boundary-layer effect in this study, which will be helpful
for the development of a new boundary-layer correction for the
design boundary.

V. Conclusions

We numerically investigated the effects of turbulent boundary
layers on panel flutter. In this study, Reynolds-averaged Navier—
Stokes (RANS) equations were solved using computational fluid
dynamics (CFD) to take the turbulent boundary layer into account,
and von Karman plate equations were solved for the panel. First, the
fluid—structure coupling code was validated. The grid resolution and
time step were carefully selected before the computation. As a result,
the flutter boundaries computed by RANS equations quantitatively
agree well with the experimental data. Moreover, the comparison
between the present and Dowell’s [7] computations showed that the
viscous effect is significantly important and should be taken into
account. In this study, the flutter boundaries with Baldwin—-Lomax
and Spalart—Allmaras models are compared and the difference
between them is found to be small. In addition, the panel flutter
problem used in this study is recommended as a benchmark problem
to validate a fluid—structure coupled code treating a turbulent flow,
since the turbulent boundary-layer effect on flutter can be examined
directly and clearly.

Then the flutter boundaries in the range M = 1.1-2.4 were
computed using the code and compared with those computed by
inviscid flow in order to clarify the effects of a turbulent boundary
layer. It was found that the boundary layer not only has a stabilizing
effect but also a destabilizing effect, depending on the Mach number.
The most important finding is that the flutter dynamic pressure
increases slowly due to the boundary layer as the Mach number
increases in the range M = 1.2-1.5.

The design boundaries proposed by Laurenson and McPherson
[19] agree with the present RANS computation in the low-supersonic
region, whereas they agree with the Euler computation for M > 2.0.
It was found that the Mach number correction factor of the design
boundary for the lower Mach numbers (1 < M < 2) includes the
turbulent boundary-layer effects. In addition, the design boundary
does not consider the parameter of boundary-layer thickness 4/a,
and therefore the boundary may change with the thickness. Thus, a
new correction is needed for the boundary layer. In this paper, the
design boundary was reviewed in terms of the turbulent boundary-
layer effect, which will be helpful for the development of the new
boundary-layer correction for the design boundary.
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